Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438020

RESUMO

While SARS-CoV-2-specific T cells have been characterized to play essential roles in host immune protection in COVID-19 patients, few researches focus on the functional validation of T cell epitopes and development of vaccines inducing specific T cell responses. In this study, 120 CD8+ T cell epitopes from E, M, N, S and RdRp proteins were validated. Among them, 110 epitopes have not been reported previously; 110, 15, 6, 14 and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; 4 epitopes from S protein displayed one amino acid distinct from the current variants of SARS-CoV-2. Thirty-one epitopes restricted by HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or polylactic-co-glycolic acid nanoparticles, which elicited robust specific CD8+ T cell responses in wild-type and HLA-A2/DR1 transgenic mice. Seven of the 31 epitopes were found to be cross-presented by HLA-A2 and H-2K/Db molecules. Unlike previous researches, this study established a modified cell co-culture system of DC-peptide-PBL using healthy donors PBMCs to validate the CD8+ T cell epitope on-silicon predicted; provided a library of CD8+ T cell epitopes restricted by a series of high-frequency HLA-A allotypes which covering broad Asian populations; identified the HLA-A cross-restrictions of these CD8+ T cell epitopes using competitive binding experiments with HMy2.CIR cell lines expressing indicated HLA-A molecules; and initially confirmed the in vivo feasibility of 9 or 10-mer peptide cocktail vaccines of SARS-CoV2. These data will facilitate the development of vaccines inducing antiviral CD8+ T cell responses.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-073411

RESUMO

Coronavirus disease 2019 (COVID-19) threatens global public health and economy. In order to develop safe and effective vaccines, suitable animal models must be established. Here we report the rapid adaption of SARS-CoV-2 in BALB/c mice, based on which a convenient, economical and effective animal model was developed. Specifically, we found that mouse-adapted SARS-CoV-2 at passage 6 (MACSp6) efficiently infected both aged and young wild-type BALB/c mice, resulting in moderate pneumonia as well as inflammatory responses. The elevated infectivity of MACSp6 in mice could be attributed to the substitution of a key residue (N501Y) in the receptorbinding domain (RBD). Using this novel animal model, we further evaluated the in vivo protective efficacy of an RBD-based SARS-CoV-2 subunit vaccine, which elicited highly potent neutralizing antibodies and conferred full protection against SARS-CoV-2 MACSp6 challenge. This novel mouse model is convenient and effective in evaluating the in vivo protective efficacy of SARS-CoV-2 vaccine. SummaryThis study describes a unique mouse model for SARS-CoV-2 infection and confirms protective efficacy of a SARS-CoV-2 RBD subunit vaccine.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-052126

RESUMO

The current COVID-19 pandemic, caused by a novel coronavirus SARS-CoV-2, poses serious threats to public health and social stability, calling for urgent need for vaccines and therapeutics. SARS-CoV-2 is genetically close to SARS-CoV, thus it is important to define the between antigenic cross-reactivity and neutralization. In this study, we firstly analyzed 20 convalescent serum samples collected from SARS-CoV infected individuals during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor-binding domain (RBD) of SARS-CoV, cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2, and neutralized both SARS-CoV and SARS-CoV-2 S protein-driven infections. Multiple panels of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV were also characterized, verifying the cross-reactive neutralization against SARS-CoV-2. Interestingly, we found that a palm civet SARS-CoV-derived RBD elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing a strategy to develop a universe vaccine against emerging CoVs. SummarySerum antibodies from SARS-CoV infected patients and immunized animals cross-neutralize SARS-CoV-2 suggests strategies for universe vaccines against emerging CoVs.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-009233

RESUMO

The coronavirus disease COVID-19, caused by emerging SARS-CoV-2, has posed serious threats to global public health, economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we firstly verified that SARS-CoV-2 uses human ACE2 as a cell receptor and its spike (S) protein mediates high membrane fusion activity. Comparing to that of SARS-CoV, the heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased -helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR1) site. Then, we designed a HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly poent activities in inibibiting the SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus infection. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the strcuture and activity relationship (SAR) of IPB02 were characterzized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the presented results have provided important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-687778

RESUMO

Fatal arrhythmias, heart failure, and sudden cardiac death after myocardial ischemia/infarction are serious threats to human health. In recent years, studies have shown that spinal cord stimulation (SCS) can balance autonomic activity, inhibit myocardial structural remodeling, improve blood flow to ischemic myocardium, effectively reduce the incidence of arrhythmia, heart failure and sudden cardiac death after myocardial ischemia/infarction, but its specific mechanism has not yet been fully elucidated. The effect of SCS on cardiac function may be achieved by inhibiting neural remodeling, or by ameliorating structural remodeling and electrical remodeling. This article reviews the progress on the role and mechanism of SCS in myocardial ischemia/infarction.


Assuntos
Humanos , Doença da Artéria Coronariana , Insuficiência Cardíaca , Infarto do Miocárdio , Terapêutica , Isquemia Miocárdica , Miocárdio , Estimulação da Medula Espinal
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-674817

RESUMO

Objective:Choosing efficient expression vector express anti HBsAg Fd and L chain in E.coli to produce anti HBsAg human Fab.Purificating inclusion bodies to denaturating and refolding the protein.Methods:Expression vector of PQE32 Fd、PQE32 L was constructed and transformed into E.coli strain M15,efficient expression clone was screened by SDS PAGE.Results:After induced by IPTG,M15 PQE32 Fd、M15 PQE32 L expressed insoluble recombinant protein in inclusion bodies.The Fd、L chain gene sequence conform with that reported in NCBI BLAST.Conclusion:The M15 PQE32 expression system is stable and efficient for expressing anti HBs human Fd、L chain.The denaturation and protein refolding of the anti HBsAg Fab expressed in inclusion bodies need to be studied further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...